6,019 research outputs found

    COMMODITY PROGRAMS AND RURAL REVITALIZATION

    Get PDF
    Community/Rural/Urban Development,

    Engineering Models to Scale

    Get PDF
    Main Text The physicist Richard Feynman famously wrote, “What I cannot create, I do not understand,” at the top of his final blackboard. This philosophy has inspired many in the emerging field of synthetic biology, which harnesses the power of biology to rationally engineer biomolecular systems for a variety of purposes, such as whole-cell biosensing and in vivo diagnostics (Slomovic et al., 2015). The “build-to-understand” approach (Elowitz and Lim, 2010) is complementary to top-down systems biology approaches and borrows concepts and techniques from engineering and computer science. By creating biological systems with desired architectures and functions, it aims to test design principles in relative isolation by exploring how biology’s building blocks, such as DNA-encoded genes, can be rearranged and altered to produce different phenotypes. In this issue, Cao et al. use this approach to tackle the question of how self-organizing systems maintain a constant ratio of physical pattern features with changing size, a property known as scale invariance (Cao et al., 2016)

    And the Noise Played on: Stochastic Gene Expression and HIV-1 Infection

    Get PDF
    Stochastic gene expression has been implicated in a variety of cellular processes, including cell differentiation and disease. In this issue of Cell, Weinberger et al. (2005) take an integrated computational-experimental approach to study the Tat transactivation feedback loop of HIV-1. They show that fluctuations in a key regulator, Tat, in an isogenic population of infected cells result in two distinct expression states corresponding to latent and productive HIV-1 infection. These findings demonstrate the importance of stochastic gene expression in molecular “decision-making.

    Identification of new markers for the Schistosoma mansoni vitelline lineage

    Get PDF
    AbstractSchistosomes cause significant morbidity and mortality in millions of the world’s poorest people. While parasite egg-induced inflammation is the primary driver of host pathology, relatively little is known at the molecular level about the organ systems that participate in schistosome egg production (i.e., testes, ovaries and vitellaria). Here we use transcriptional profiling and in situ hybridization to characterise the vitellarium of Schistosoma mansoni. We uncovered several previously uncharacterised vitellaria-specific factors and defined molecular markers for various stages in the vitellocyte differentiation process. These data provide the framework for future in-depth molecular studies exploring the biology of this important parasite organ

    Rewiring Bacteria, Two Components at a Time

    Get PDF
    In this issue, Skerker et al. (2008) present a rational method for rewiring the protein-protein interactions and output responses of prokaryotic two-component signal transduction systems. This work has important implications for understanding the specificity of protein interactions and for designing protein-based synthetic signaling cascades. The rational design of biological networks and pathways promises to reveal ways to rewire cells for new biological functions or to gain insights into the behavior of natural systems. Much of the work to date has focused on the manipulation of transcriptional and posttranscriptional elements to create synthetic gene networks with desired functions (Bayer an

    Schistosomiasis as a disease of stem cells

    Get PDF
    Schistosomiasis is a devastating parasitic disease caused by flatworms of the genus Schistosoma. The complex life cycles and developmental plasticity of these parasites have captured the attention of parsitologists for decades, yet little is known on the molecular level about the developmental underpinnings that have allowed these worms to thrive as obligate parasites. Here, we describe basic schistosome biology and highlight how understanding the functions of stem cells in these worms will transform our understanding of these parasites. Indeed, we propose that schistosomiasis is fundamentally as disease of stem cells. We hope this review will attract new interest in the basic developmental biology of these important organisms

    High performance, accelerometer-based control of the Mini-MAST structure at Langley Research Center

    Get PDF
    Many large space system concepts will require active vibration control to satisfy critical performance requirements such as line of sight pointing accuracy and constraints on rms surface roughness. In order for these concepts to become operational, it is imperative that the benefits of active vibration control be shown to be practical in ground based experiments. The results of an experiment shows the successful application of the Maximum Entropy/Optimal Projection control design methodology to active vibration control for a flexible structure. The testbed is the Mini-Mast structure at NASA-Langley and has features dynamically traceable to future space systems. To maximize traceability to real flight systems, the controllers were designed and implemented using sensors (four accelerometers and one rate gyro) that are actually mounted to the structure. Ground mounted displacement sensors that could greatly ease the control design task were available but were used only for performance evaluation. The use of the accelerometers increased the potential of destabilizing the system due to spillover effects and motivated the use of precompensation strategy to achieve sufficient compensator roll-off

    Diversity-Based Design of Synthetic Gene Networks with Desired Functions

    Get PDF

    Synthetic biology devices for in vitro and in vivo diagnostics

    Get PDF
    There is a growing need to enhance our capabilities in medical and environmental diagnostics. Synthetic biologists have begun to focus their biomolecular engineering approaches toward this goal, offering promising results that could lead to the development of new classes of inexpensive, rapidly deployable diagnostics. Many conventional diagnostics rely on antibody-based platforms that, although exquisitely sensitive, are slow and costly to generate and cannot readily confront rapidly emerging pathogens or be applied to orphan diseases. Synthetic biology, with its rational and short design-to-production cycles, has the potential to overcome many of these limitations. Synthetic biology devices, such as engineered gene circuits, bring new capabilities to molecular diagnostics, expanding the molecular detection palette, creating dynamic sensors, and untethering reactions from laboratory equipment. The field is also beginning to move toward in vivo diagnostics, which could provide near real-time surveillance of multiple pathological conditions. Here, we describe current efforts in synthetic biology, focusing on the translation of promising technologies into pragmatic diagnostic tools and platforms.United States. Defense Threat Reduction Agency (Grant HDTRA1-14-1- 0006)United States. Office of Naval Research. Multidisciplinary University Research InitiativeUnited States. Air Force Office of Scientific Research (Grant FA9550-14-1-0060)Wyss Institute for Biologically Inspired EngineeringHoward Hughes Medical Institut
    • …
    corecore